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for an RF Plasma Glow Discharge
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In this paper, we report on numerical solutions and model reduction results for
a plasma glow discharge model with a radio frequency ionization source. A pseu-
dospectral implementation of a global spectral method was found to give accurate
simulation results that correctly reflected the expected physical behavior of an argon
plasma under the simulated operating conditions. Numerical residual analysis was
used to confirm solution convergence. Using snapshots taken from the detailed sim-
ulations, a reduced basis was generated in terms of two groups of empirically deter-
mined eigenfunctions, distinguished by their type of boundary conditions (Dirichlet
vs Neumann). With this model reduction approach, it was found that the state vari-
ables can be accurately predicted by projecting the original modeling equations onto
the reduced basis with considerable computational savings over the original simula-
tions. Limitations of the model reduction method in predicting secondary (derived)
quantities are discussed.c© 2001 Academic Press
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1. INTRODUCTION

Plasmas with low gas pressure (1 mtorr to 10 torr), temperature (300 to 500 K), and degree
of ionization (10−6 to 10−1) are used extensively for manufacturing integrated circuits.
Plasma processing is a key fabrication step, especially for etching and deposition of thin
films. Plasma discharge reactor systems are characterized by a large number of adjustable
parameters and poorly understood transport and reaction mechanisms. This has motivated
the vigorous development of first-principles models and full-scale simulators in the past
decade to study various aspects of plasma processing. However, the numerical solution
of the resulting models usually requires substantial computational resources, a primary
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reason being that current simulation techniques inevitably result in a finely resolved spatial
discretization mesh in the plasma sheath regions. These large-scale system models are
unsuitable for real-time control, efficient simulation, and iterative process optimization. To
increase the utility of the existing simulators, model reduction methods must be used to
extract the dominant spatial characteristics of the discharge; numerically efficient spectral
projection methods are then used to generate the reduced model.

Numerical methods for producing low-dimensional representations of infinite-dimen-
sional systems have been proposed in the context of the theory of approximate inertial
manifolds (e.g., the nonlinear Galerkin method [1–4]) and reduced-basis methods such as the
proper orthogonal decomposition (POD) [5–7]. Applications include fluid flow simulations
in complex geometries [8], rapid thermal chemical vapor deposition [7], rapid thermal
processing simulation and control [9, 10], nonlinear model-based process control [2–4, 11],
and grooved channel flow reactor control [12–14]. To the authors’ knowledge, there have
been no similar studies reported on plasma glow discharge processes.

In this study, we report on numerical techniques for computing the radio frequency (RF)
discharge solution and demonstrate model reduction results for this system. The model is
similar to those used for magnetohydrodynamics simulations and models of this type are
commonly used to describe the physics of plasma discharges [15–17]. As the first test of
plasma model reduction, the model and boundary conditions are slightly modified from a
previous DC simulation [17]: in the current study, the electron diffusivity is assumed to be
independent of electron energy and the boundary conditions are made to be homogeneous.
A Chebyshev collocation method is used for the spatial discretization of the glow discharge
model. The discretized sets of ordinary differential equations are integrated in time using
a fully implicit integration method with a Newton–Raphson method solving the nonlinear
set of equations at each time step. The detailed simulation data then are used to generate
the empirical eigenfunctions using the proper orthogonal decomposition method. Finally,
the Galerkin projection method is used with the reduced-basis functions to simulate the
dynamics of the reduced model. The performance of the reduced model is compared to the
high-degree simulations, and limitations of the reduced-basis discretization methods are also
discussed.

2. MODELING EQUATIONS

Complete models of low pressure plasma processing reactors can be conceptually de-
composed to three submodels [16, 18] describing: (1) the plasma physics (concentrating
on discharge structure); (2) plasma chemistry (also called the reactor model); and (3) sur-
face reactions. The plasma chemistry (neutral transport) models are a natural extension
of computational fluid dynamics simulations and are relatively more advanced than the
plasma physics model, and the surface reaction model relies on descriptions of the solid
state physics of the material undergoing processing; therefore, the plasma physics sub-
model can be considered the link connecting the three submodels. Once the plasma physics
model is complete, the simulator can be coupled with the transport model with an existing
computational fluid dynamics (CFD) package such as FLUENT or FIDAP.

A complete model describing the discharge physics will combine the Boltzmann equation
with Maxwell’s equations. However, all the particle-scale information contained in the
Boltzmann distribution function may not be necessary for a particular modeling purpose.
An alternative fluid-type approach based on the moments of the distribution may be used
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to obtain information on the macroscopic properties of the discharge. These fluid type
formulations have had great success in explaining the physics of the glow discharge, and the
results can be comparable to those produced by Monte Carlo particle simulation techniques
[16]. In this study, the model is equivalent to the modeling equations presented in [17, 19]
and the modifications according to [20, 21] are adopted for this RF simulation and model
reduction study. The single exception to the cited modifications is that a separate effective
electric field meant to compensate for potential errors introduced by applying the diffusion-
drift approximation to the ion species balance was not included in this study; under the
conditions used for this simulation study, it was found that this effective electric field could
be neglected because of the relatively small displacement of ions during an RF cycle. A
summary of the major differences between the model used in the current study and the
model used in previous simulations by the authors [17] is included below.

1. Electron diffusivity is a constant in both the electron flux and thermal conductivity
definitions. The model validity is not significantly affected by this assumption [20, 22] under
the operating conditions used in this study. Therefore, the electron and ion fluxes have the
same form of diffusion-drift expression.

2. In the electron energy balance equation, the electron density and temperature are
combined into the so-called electron energy density; i.e.,ne(

3
2kbTe) = neεe = ωe.

3. The argon ionization coefficient value is based on the experimental data fitted by
Richards and co-workers [22].

After nondimensionalization, the following one-dimensional model is used for this RF
simulation and model reduction study

0 = ∂E

∂z
− ε(u+ − ue) (1)

T
∂ue

∂τ
= −∂ Je

∂z
+ kue (2)

T
∂u+
∂τ
= −∂ J+

∂z
+ kue (3)

T
∂ω

∂τ
= −∂Q

∂z
− χ Je · E − kueHi , (4)

where the dimensionless time is defined asτ = νt , and the four state variables consist of the
voltage8, electron number densityue, ion number densityu+, and electron energy density
ω. The dimensionless variables are defined by

8 = V

V0
, ue = ne

n0
, u+ = n+

n0
, and ω = Tene

Te0n0
.

The auxiliary equations for electric fieldE, electron fluxJe, ion flux J+, electron energy
flux Q, and ionization rate coefficientk are

E = −∂8
∂z

Je = −∂ue

∂z
− PeueE
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De+ · J+ = −∂u+
∂z
− P+u+E

Q = −5

3

(
∂ω

∂z
+ PeωE

)

k =
{

Da(εe− 5.3)e
−4.9√
εe−5.3 , for εe ≥ 5.3 eV;

0, otherwise.

The boundary conditions atz= 0 (grounded electrode) are

8 = 0
ue = 0
∇u+ = 0

ω = 0

and atz= 1 (powered electrode)

8 = 8DC +8RF sin(2πτ)

ue = 0

∇u+ = 0

ω = 0.

Source terms accounting for secondary electron emission were not included in the electron
number density boundary conditions, in contrast to previous DC simulation studies (e.g.,
[17]). This simplification is justified because the rate of secondary electron generation is ex-
pected to be less than one tenth the ionization rate [20]; a consequence of this simplification
is that we should not expect solutions corresponding to a plasma sustained by secondary
electrons (theγ discharge, such as shown in [23]). Zero electron density at the boundaries
result in the Dirichlet boundary conditions for energy density.

The values and definitions of dimensionless parameters are given in Table I. The gas
properties and scaling parameters are listed in Table II. The operating condition and sys-
tem configuration are selected so that computed results can be compared with previously
published simulation results [23–26].

TABLE I

Dimensionless Parameter Values and Definitions

for RF Simulation

Symbol Definition Value Symbol Definition Value

ε
en0L2

ε0V0
723.8 De+

De
D+ 3× 104

Da
kio L2N

De
955.9 χ

eV0
3
2 kbTe0

100

Pe
µeV0

De
25 Hi

Hei
3
2 kbTe0

15.578

P+
µ+V0

D+ 3500 T νL2

De
45.2
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TABLE II

Gas Physical Properties and Glow Discharge System

Physical Dimensions for RF Simulation

Symbol Description Value

L interelectrode spacing 2 cm
n0 charge particle reference density 1× 1010 cm−3

V0 reference voltage 100 V
3
2
kbTe0 reference electron temperature 1 eV

D+ ion diffusivity 40 cm2

s

µe electron mobility 3× 105 cm2

V ·s
µ+ ion mobility 1.4× 103 cm2

V ·s
Hei ionization enthalpy loss 15.578 eV
VDC direct current bias 0 V
VRF RF forcing amplitude 40 V
ν RF forcing frequency 13.56 MHz

kio ionization rate prefactor 8.7× 10−9 cm3

s·eV

3. NUMERICAL METHODS

Current plasma equipment simulators are capable of performing two-dimensional simu-
lations for their specific design purpose; for example, inductively coupled plasma, electron
cyclotron resonance reactor, reactive ion etch, or PECVD systems have been simulated
individually [27]. The simulators take a first-principles approach by solving the full fluid
equations with finite element methods [28] or finite difference methods [29], or by solving
the Boltzmann equations with Monte Carlo methods [30, 31], to obtain the spatiotempo-
ral distributions of the state variables. Hybrid methods using both FEM and Monte Carlo
methods also have been demonstrated [32, 33]. In this paper, we present the global basis
function approach as an alternative to localized basis function discretizations such as finite
elements [15] and the block implicit implementation of finite differences [34]. Our approach
is motivated by the excellent convergence property of spectral methods [36], their trans-
parency of implementation to discretizing partial differential equations and their boundary
conditions, and the great flexibility of selecting and optimizing trial functions for particular
applications, e.g., reduced-basis discretization methods. Finally, direct comparisons of the
computational cost and numerical accuracy of the reduced-basis and original simulations
are simplified when global basis functions are used in all simulations.

In this spectral formulation, the modeling equations and boundary conditions are dis-
cretized and solved by a weighted residual method that combines elements of collocation
and pseudospectral methods. If each of the states (8, ue, u+, andω) is represented by a
linear combination of orthogonal trial functionsψi (z) defined over 0≤ z≤ 1, e.g.,

ue(t, z) =
N∑

i=1

ci (t)ψi (z), (5)

the vector field describing the time evolution of the glow discharge is determined by substi-
tuting the trial function expansions into the modeling equations and projecting this residual
onto each trial function, subject to the problem boundary and initial conditions. In particular,
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theψi (z) are defined in terms of the Lagrange interpolation polynomials for the Chebyshev
collocation method [35] used in the detailed simulations of this study. For the reduced-basis
simulations, theψi (z) are obtained using the proper orthogonal decomposition technique
and the semidiscretized reduced model is produced using the Galerkin projection method
[36]. The projection operation is carried out by numerical quadrature on a collocation grid
defined by the extrema of a Chebyshev polynomial.

3.1. Chebyshev Collocation Method and Residual Analysis

The building blocks of a Lagrange interpolation polynomial are selected as the trial
functionsψi of (5) for the discrete-ordinate pseudospectral formulation of semidiscretiza-
tion method used to produce the initial, detailed RF simulation results. The state variables
u are approximated using a linear combination ofN polynomials of degreeN − 1; i.e.,
u =∑N

i=1 ci (t)ψi (z), where the building blocks are

ψi (z) =
N∏

j=1
j 6=i

z− zj

zi − zj
.

The coefficientci represents the value of that state at the discretization pointzi because
ψi (zj ) = δi, j by definition. Because theψi are continuous and differentiable over the en-
tire domain, explicit formulas for differentiation of up to order(N − 1) can be obtained
for all z [37]. Once the discretization grid is specified, differentiation becomes a matrix
multiplication operation, i.e.,

du
dz
= Ac and

d2u
dz2
= Bc,

where the elements ofaji andbji for the differentiation matricesA andB are

ai j = dψ j (zi )

dz
and bi j = d2ψ j (zi )

dz2
, i, j = 1, 2, . . . , N (6)

andc= [c1, c2, . . . , cN ]T = [u(z1), u(z2), . . . ,u(zN)]T .
In principle, any discretization grid can be used to construct the Lagrange interpolation

polynomial. However, the interpolated solutions between discretization points are accurate
only if the individual building blocks behave well between the points. Lagrange polynomials
constructed with uniformly spaced discretization points will pass through all construction
points exactly but will oscillate between points with increasing amplitude near the interval
end points (z= 0, 1). It has been shown [35] that spacing the discretization points according
to a quadratic weight function will suppress the spurious oscillations near the interval end
points. In this study, the discretization positions are chosen as the Chebyshev extrema
distribution,

zj = 1

2

(
cos

(
( j − 1)π

N − 1

)
+ 1

)
, j = N, N − 1, . . . ,1. (7)

In the limit of the endpoints, the Chebyshev node spacing is inversely proportional to the
square of the total number of points used. This suggests that these polynomial trial functions



RF PLASMA GLOW DISCHARGE 737

can resolve features with length scales of orderN−2 in the sheath regions while retaining
good convergence properties in the bulk phase (see the discussions in [36, p. 40].

Having defined the discretization points and the discrete differentiation operators, the
four modeling equations are discretized to give 3(N − 2) ordinary differentiation equa-
tions (ODEs) in time and(N − 2) linear algebraic equations (from the Poisson equation)
plus eight linear equations from the boundary conditions. The set of discretized system of
equations is integrated in time using the fully implicit backward-Euler algorithm using the
Newton–Raphson method to solve the nonlinear equations at each time step. The modeling
equations describing the time-integration method can be written as

AEk+1− ε(uk+1
+ − uk+1

e

) = 0
(8)

uk+1+ 1t

T
(AΓk+1−Gk+1) = uk

Lu k+1 = c, (9)

where1t is the given time step size whilek denotes the current step; the first equation
is the discretized Poisson equation (1);u,Γ, andG represent discretized values ofue, Je,
andkue (respectively) in the electron continuity equation (2), oru+, J+, andkue for the
ion continuity equation (3), orω, Q, and (χ Je · E + kueHi ) for electron energy density
equation (4). Equation (9) represents the eight boundary conditions; the linear operatorL
is the discretized first-order differentiation arrayA when (9) represents the ion boundary
condition, or is the identity array otherwise. Thec in (9) is zero except when (9) corresponds
to Φ(z= 1), for which it isΦRF sin(2πτ).

There are two advantages of using the fully implicit backward Euler algorithm. First, it
is simple to implement and is unconditionally stable. The second advantage is that the time
increment can be fixed so that at each time step the only computation is the Newton–Raphson
iteration. By storing the solution calculated over the entire previous RF cycle and using these
as the corresponding initial guesses for the Newton–Raphson procedure for points during
the next cycle, the number of iterations required to reach converged solutions is significantly
decreased. An additional advantage will be discussed in the following section.

The convergence of the computed solutions (in terms of trial function truncation number
N) can be assessed by examining the weighted 2-norm of the time derivative or residual
functions (right-hand sides of Eqs. (1)–(4)) plotted as a function of the spatial discretization
level (N) of the modeling equation. In this study, a two-level grid method was imple-
mented to numerically conduct this residual analysis for the collocation solution. The time
derivative/residual function is obtained by substituting the solution, interpolated to a suffi-
ciently fine grid (sufficiently fine to provide a converged approximation to the residual
function), into the modeling equations. Neville’s algorithm [38] is used for this high degree
interpolation. This interpolation algorithm is based on rearranging the Lagrange interpolat-
ing polynomial and noting that any interpolated value of the polynomial, passing through
zi , zi+1, . . . , zi+m, can be obtained by the values of two lower degree polynomials, passing
throughzi to zi+m−1 and zi+1 to zi+m. A tableau of values thus is established from the
zeroth degree polynomials, passing through only one point, to the highest degree, which is
the interpolated result.

This residual analysis requires the definition of quadrature operations on the finer-scale
discretization grid. The quadrature weights associated with the Chebyshev extrema are
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obtained by noting that choosing this node distribution implicitly implements the Chebyshev
polynomial expansion, which can be evaluated with the exact formula

Tn(z) = cos(n cos−1(z)), n = 0, 1, 2, . . . .

Thus, the quadrature weight arrayw associated with the Chebyshev extrema gridz can be
obtained by

w = (Q̄Q
−1
)T w̄, (10)

where Qi, j = Tj−1(zi ) and Q̄i, j = Tj−1(z̄i ) for i, j = 1, 2, . . . , N. Therefore,Q̄ is the
Chebyshev polynomial interpolation array evaluated on the Gauss–Lobatto quadrature grid
z̄ computed using the software described in [39].

3.2. Limit-Cycle Fixed-Point Methods

Defining v as the vector of the spatially discretized state variablesΦ, ue, u+, andω,
we can write the time-discretized set of equations that result from the backward-Euler
integration method (8, 9) as

g(vk+1, vk) = 0.

The limit-cycle fixed-point algorithm is based on finding the limit-cycle initial conditionv1

such that

vns− v1= 0, (11)

wherens− 1 is the number of time intervals used in the backward-Euler integration method
per RF cycle. Using a subscript to denote fixed-point algorithm iteration number, linearizing
(11) at the initial conditionv1

i gives

0= vns
i − v1

i +
(
∂vns

i

∂v1
− I
)(

v1
i+1− v1

i

)
,

which is solved for the initial condition update (v1
i+1− v1

i ).
To compute the derivatives∂vns

i /v
1, g is linearized at a solution (vk+1, vk) to g= 0 and

the following arrays are defined

Jk+1 = ∂g
∂vk+1

and C = ∂g
∂vk

.

We find

∂vk+1

∂vk
= −[Jk+1]−1C

and

∂vk+n

∂vk
= (−1)n[Jk+n]−1C[Jk+n−1]−1C . . . [Jk+1]−1C.

The overall procedure for computing the updated set of initial state variable profiles comes
at little additional computational cost becauseJ is the Jacobian array associated with solving
(8, 9) andC is a constant array consisting of (−1) on the diagonal elements corresponding
to each semidiscretized ordinary differential equation in time (and zeros elsewhere).
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3.3. POD–Galerkin Method

The large number of discretization points required to resolve the sheath regions and the
many RF cycles required to asymptotically approach an equilibrium solution make RF
solutions computationally expensive. This motivates the development of the reduced-basis
projection method used in this study to obtain a reduced-order model.

In the overall POD–Galerkin projection approach to producing reduced-order models,
each state variable is defined by a global trial function expansion (as in Eq. (5)), where the
trial functionsψi are replaced by thoseφi obtained by the proper orthogonal decomposition
method, a technique for generating an optimal basis for time-varying state variables [8].
Consider the ensemble{uk} of scalar fields, each being a functionu = u(z) defined on
the domain [0, 1]. The goal is to find a basis{φ j (z)}∞j=1 for a subspace of a Hilbert space
L2([0, 1]) that is optimal for the data set{uk} in the sense that truncated sequences of the
form

uN(z) =
N∑

j=1

ajφ j (z)

describe a typical member of the ensemble better than representations of the same truncation
numberN in any other basis. The resulting mathematical statement of optimality can be
reduced to an eigenvalue problem [5]∫ 1

0
〈u(z)u∗(z′)〉φ(z′) dz′ = λφ(z), (12)

where the∗ denotes the complex conjugate. The eigenfunctionsφi of this two-point spatial
correlation operator form a set of orthogonal functions satisfying the same homogeneous
boundary conditions as theuk while the eigenvaluesλi quantify the probability of the
occurrence of theφi in the ensemble. Because

λi = 〈(u, φi )
2〉,

where (· , ·) and〈·〉 denote the inner product and the ensemble average, respectively, the
mean square error due to the truncation is

ε̄2=
∞∑

j=N+1

λ j .

In other words, the “energy” captured can be quantified by the sum of the eigenvalues
corresponding to the modes used in the solution expansionuN(z).

Direct solution methods for the eigenvalue problem (12) can become computationally
prohibitive when the functionu is represented by a high degree, trial function expansion,
such as in highly resolved finite element simulations. To overcome this numerical limitation,
the basis functionsφi may be found by the method of snapshots or strobes [40]. Suppose that
{ui }Mi=1 are spatially discretized snapshots of the state variable fieldu and that the weighted
inner product on theN-dimensional vector space is denoted by (· , ·), that is, the discretized
version of the inner product inL2([0, 1]). If φ is an eigenvector then

φ =
M∑

k=1

bkuk,
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where the coefficientsbk remain to be determined. TheN-dimensional eigenvalue problem
analogous to (12) may then be written as(

1

M

M∑
i=1

ui ⊗ ui ,

M∑
k=1

bkuk

)
= λ

M∑
k=1

bkuk, (13)

where⊗ is the tensor product. The left-hand side of (13) can be rearranged to give

M∑
i=1

[
M∑

k=1

1

M
(ui , uk)bk

]
ui (x),

and the sufficient condition for the solution of (13) will be to find coefficientsbk such that

M∑
k=1

1

M
(ui , uk)bk = λbi ; i = 1, . . . ,M. (14)

This is now anM × M eigenvalue problem to be solved for the snapshot linear combinations
b that define the discretized reduced-basis functions. This problem is readily solved using
the singular value decomposition function in MATLAB ; theb correspond to the left singular
vectors of the array of snapshot inner products, and the eigenvalues correspond to the
singular values of the same. Finally, we note that the snapshots{ui }Mi=1 must be linearly
independent to generateM orthogonal eigenfunctions defined by the vectorsb, and that the
POD method does not give a criterion in choosingM ; therefore, numerical tests must be
conducted to determine when a sufficiently “converged” basis is found.

3.3.1. Galerkin projection numerical methods.Having computed one or more reduced-
bases with the POD method, the reduced model is produced by projecting the original,
nonlinear modeling Eqs. (1)–(4) onto these spatially discretized trial functions (note that
a variable transformation forΦ is used to make the boundary condition atz= 1 homoge-
neous). The trial functions are discretized on a Chebyshev extrema grid (7) and the same
discrete differentiation arrays are used as in Eq. (6) as part of the numerical, semidiscrete
Galerkin projection. The quadrature weights required in the Galerkin projection are obtained
using Eq. (10).

With the empirical eigenfunctions satisfying all boundary conditions, the four modeling
equations are discretized to give(2N1+ N2)ODEs in time andN1 linear algebraic equations
(resulting from the Poisson equation), whereN1 is the number of trial functions used
to approximateΦ, ue, andω, while N2 is the truncation number foru+ expansion (the
difference betweenN1 and N2 is a result of the different types of boundary conditions).
The same implicit time integration method used previously in the Chebyshev collocation
simulations is employed again. The set of equations for the time integration ofue, u+ and
ω can be written as

uk+1+ 1t

T
Pi (AΓk+1−Gk+1) = uk,

where the notation is similar to Eq. (8), butu now represents the mode amplitude coefficient
vectors andPi is the discretized projection operator corresponding to eigenfunctionsΨ of
seti . Note that mode amplitude coefficients for the voltage trial function expansion can be
defined explicitly as a function of electron and ion number densities through the Poisson
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equation; i.e.,

a= ε(P1(BΨ1))
−1(−(P1Ψ2)c+ (P1Ψ1)b),

where the mode coefficientsb andc correspond to the electron number density and ion
number density, respectively.

4. COMPUTATIONAL RESULTS AND DISCUSSION

4.1. Results for a Representative RF Case

Detailed simulation results for argon RF discharges under various operating conditions
have been reported in the literature [15, 16, 23–26]. The purpose of this simulation study is
to show that accurate results can be obtained using global spectral methods, and to provide
the snapshot data for the POD method as part of the model reduction procedure.

Figure 1 shows a representative solution obtained using 100 discretization points to rep-
resent the particle densities, voltage field, and electron temperature over one RF cycle. The
interelectrode spacing was set at 2 cm and the operating conditions corresponded to 1 torr
gas pressure and 40 volts RF forcing amplitude. The simulation initial conditions consisted
of flat particle density profiles; initial ion density was one thousandth of the target mean
value and electron density was one tenth of that of the ions. Solutions obtained using dif-
ferent initial values for voltage and electron energy were investigated; these simulations all
asymptotically approached the same limit-cycle solution. For the long-term time-integration
simulations, the solution was considered to be converged onto a limit cycle when the 2-norm
of the difference between the beginning and end of the cycle for the state variables passed
below a preselected value of 10−8. Likewise, the Newton–Raphson iterations were stopped
when the norm of the difference between initial and final states reached the same value.

Snapshots of the solution profiles corresponding to a limit-cycle solution are shown at
four phases of an RF cycle in Fig. 1 (solutions obtained by integrating over 2000 RF cycles
are essentially identical to those obtained by the fixed-point algorithm). The solution plots
qualitatively agree with many of the reported physical phenomena characteristic of argon
plasmas [15, 16]. The ion density profile is essentially constant over the cycle while electrons
instantly respond to the voltage modulation. The plasma sheath thickness reaches 0.3 cm
near the cathode, and the plasma potential is approximately 20 volts. Voltage distribution
is flat in the bulk phase, showing the quasineutral property of the plasma, and is steeply
sloped in the sheaths. Thus, as shown in the electric field distribution plot, the major electric
driving force is located in the sheath.

Electron energy is also modulated with the electrode voltage variations. The mean energy
distribution is flat in the bulk and has maximum magnitude inside the momentary cathode
sheath. Because the ionization rate depends on both the electron number density and the
electron energy, the ionization peak occurs at the momentary cathode sheath/bulk boundary
(compare the energy and the ionization rate plots), where the number of high energy electrons
is sufficient to undergo a significant electron-impact ionization reaction.

The plots of electron, ion, displacement, and total currents shown in Fig. 2 (corresponding
to the same solution shown in Fig. 1) quantitatively agree with the total current reported in
[23] despite the omitted effect of secondary electrons. Because the generation of secondary
electrons contributes to sustaining the discharge, the total current needed to maintain the
discharge should be lower. Qualitatively, the plot of plasma current profiles also reflects the
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FIG. 1. Argon RF discharge solution corresponding to a converged limit cycle at 1 torr pressure, 2-cm
interelectrode spacing, and 293 K. Note that the ion particle density profile remains essentially constant during
the RF cycle.

physics of the discharge. Ion currents, modulated inside the sheaths, are almost straight in
the bulk phase due to the ambipolar diffusion effect (see Fig. 1). Electrons are the major
current carrier in the bulk phase while displacement currents dominate inside the sheaths.
The ion current only contributes 10% of the total current. The sum of electron, ion, and
displacement currents is a constant due to the current conservation law, which can be derived
using the Poisson equation (1), particle continuity equations (2) and (3), and the definition
of displacement current (see [41]). The current characteristics reflect the capacitive nature
of the argon discharge; i.e., the sheaths behave like capacitors while the bulk phase behaves
like a resistor. The regions are connected sequentially as a unit in the entire electrical circuit.
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FIG. 2. Snapshots of current profiles in the RF simulation.

Figure 3 shows the ion current (at the powered electrode) and the total current responding
to the driving voltage over an RF cycle. The four phases used in Figs. 1 and 2 are also
marked on the sine curve of the voltage plot. The ion current and the total current curves
are interpolated from the current values at the four phases (0◦, 45◦, 90◦, and 135◦) using a
Fourier series. It is interesting to note that the total current has an approximate 20◦ phase
lead with respect to the controlled voltage while the ion current follows the phase of the
voltage waveform.

The simulation results demonstrate both the correct physics of the discharge model and
the challenges the model presents to the numerical solution techniques. As shown, the pri-
mary characteristic of plasma is the thin boundary layers. What distinguishes RF discharge
simulations from many computational fluid dynamics computations is that the solution
convergence depends on resolving the boundary layers rather than large-scale structures.
Independent of what numerical techniques are used, the trial functions must be able to
resolve the details of the interphases and the sheaths. Insufficient resolution of these re-
gions will cause problems in terms of solution convergence. The solution shown in Fig. 1 is
produced by the Chebyshev collocation method with 100 collocation points. This “coarse”
grid solution is interpolated with 250 Gauss–Lobatto points and the interpolated solution is
substituted into the modeling equations to obtain the time derivative and residual functions
(see Eqs. (1)–(4)). The 2-norms of these functions are plotted in Fig. 4 as a function of the
truncation number corresponding to the number of solution collocation points used.

The residual analysis (Fig. 4) confirms that the solution found under this operating con-
dition can be considered a converged solution. Because the Poisson equation is an ordinary
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FIG. 3. Ion current at the powered electrode and total current as a function of the applied voltage in the RF
simulation.

differential equation, as the number of collocation pointsN increases, the residual function
(Eq. (1)) norm approaches zero. For the other three partial differential modeling equations,
the norm of the time derivative functions (see the right-hand side of Eqs. (2)–(4) approaches
(RF-cycle average) constants because of the nonzero time derivative functions. The residual
plot serves as a good criterion for the measuring trade-off between computational efficiency
and solution discretization accuracy.

FIG. 4. Residual analysis for RF simulation.
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4.2. RF Simulation Model Reduction

4.2.1. Optimal discretized basis functions from POD.The computational efficiency
of the POD-based model reduction method results from extracting the minimum num-
ber of uncorrelated spatial characteristics of the existing solutions and using the principal
spatial structures of the solutions to spectrally discretize the original, nonlinear modeling
equations. Because each empirical eigenfunction is better tailored to capturing the spatial
features of the solution, relatively few trial functions are needed to predict the true system’s
dynamics. This translates directly into significant computational saving over the simulations
based on orthogonal polynomial or other general trial function expansions. As discussed in
Section 3.3, the truncation number of the empirical eigenfunction expansions can be con-
veniently determined using the eigenvalue associated with each POD mode. In this section,
the empirical eigenfunctions are generated from the simulation data obtained in previous
section, and the performance of the reduced model is demonstrated in the next section.

Figure 5 shows the empirical eigenfunctions and the scaled “solution snapshots” used
to generate the reduced basis. The purpose of this model reduction study is to accurately
predict with the reduced model the dynamic behavior that includes the start-up transient
and the limit-cycle behavior (a goal similar to [8]). Therefore, snapshot data were collected
from a transient simulation starting from the stated initial condition to a state near the limit

FIG. 5. Snapshots (top) and empirical eigenfunctions (bottom) generated using the proper orthogonal decom-
position.
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cycle. In this study, a set of approximately 60 snapshots selected from the first 1000 RF
cycles were used.

Instead of generating four sets of empirical eigenfunctions, the solution profile snapshot
data are classified into two sets according to the form of their boundary conditions. The
first set corresponds to the state variables that are subject to Dirichlet boundary conditions;
it includes electron density, energy density, and voltage (after the variable transformation
is applied making the boundary condition homogeneous at the powered electrode) profile
snapshots. The three sets of solution snapshots after scaling are shown in the top left of
Fig. 5. Concatenation of the solution snapshots into a single snapshot array for the POD
procedure exploits the possible correlations among the three state variables, potentially
reducing the total number of empirical eigenfunctions needed for the subsequent projection
methods. The second set of functions corresponds to snapshots of ion density profile, which
must satisfy vanishing first-derivative boundary conditions.

Sorting the snapshot data according to boundary condition type has an additional benefi-
cial effect on the resulting reduced bases. As discussed earlier, the mass of the (positively)
ionized gas species relative to the electrons results in little change of the ion number density
profile during an RF cycle, while the other three states (electron density, voltage, and elec-
tron energy density) are strongly modulated by the momentary cathode voltage. This gives
the ion number density profile a largely symmetric form (with respect toz) compared to
the other states. Therefore, adding snapshots of the other fields to the ion density snapshots
unnecessarily introduces asymmetry. This property is dramatically shown in the empirical
eigenfunctions presented in Fig. 5; compare the highly nonsymmetric third mode of Set 1
to the relatively symmetric third mode of Set 2.

Table III shows the percentage of the accumulated energy (the normalized partial sum
of eigenvalues) associated with two sets of empirical eigenfunctions produced by the POD
method. Both sets have a dominant first mode, which captures the major characteristics of
the solution profiles. The second and higher modes tailor the solution profiles to describe
the finer structure. At first glance it appears that using the first three to five modes from
each set would be sufficient to produce accurate solutions using the reduced-order model.
However, we found that a truncation numberN2 = 8 was necessary for the ion density
profile expansion whileN1 = 22 was used for the remaining state variable trial function
expansion truncation numbers. Analysis of this discrepancy is provided in Section 4.2.4.

4.2.2. Reduced-model simulation results.The reduced-order model is produced by
semidiscretizing the original RF plasma modeling equations using the Galerkin projection

TABLE III

Accumulated Energy Captured by the

Empirical Eigenfunctions

Set 1 Set 2

Mode λi % Mode λi %

1 181.86 96.22% 1 61.7113 97.9544%
2 5.39 99.08% 2 1.1927 99.8475%
3 1.34 99.78% 3 0.0897 99.9898%
4 0.34 99.96% 4 0.0062 99.9996%
5 0.03 99.98% 5 0.0001 99.9998%
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method and the empirical eigenfunctions shown in the Fig. 5. Each state variable is rep-
resented in terms of a linear combination of the empirical eigenfunctions that satisfy the
appropriate boundary conditions. An important difference from the previously described
collocation method is each computational step in time involves projections by quadrature.
It was found that 60-point Chebyshev extrema quadrature integration of these eigenfunc-
tions essentially produce converged inner product computations and that little accuracy was
gained using finer discretization grids for the reduced-model simulations (cf. the 100 points
used to obtained the snapshot data).

Figure 6 (left column) shows representative results produced by the reduced-order model
corresponding to the 250th and 500th RF cycle (computed by integrating the reduced model

FIG. 6. Performance of the reduced model. The left column shows the solutions during the 250th, 500th, and
limit RF cycle for the reduced model while the right column corresponds to the original solution snapshots at the
same points in time.
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over each time interval) and a point on the limit-cycle solution (computed using the fixed-
point algorithm). The initial condition for the limit cycle procedure was chosen as the profiles
corresponding to the start of the 250th cycle; we note that at that point in the simulation,
the values ofue(z) andu+(z) are less than half their steady-state values. This gives some
indication of the excellent convergence properties of the fixed-point algorithm. The right
column shows the full-order simulation results at the same points in time for comparison.
The reduced-order model predictions of the state variable profiles are accurate with only
minor errors visible for electron density inside the sheaths. The ion density and currents,
which are of primary importance in plasma processing applications, are particularly accurate
when compared to the detailed simulations. We note that these profiles were not used in
the original snapshot data for generating the empirical eigenfunctions. Minor differences
between the full and reduced-order simulator predictions can be seen in the electron current
profiles—these differences will be discussed in Section 4.2.4.

4.2.3. Comparison of computational costs.A summary of the computational costs of
the full and reduced-order simulations are presented in Table IV. In this table we present
a comparison of the execution time and floating point operation counts of the simulations,
the limit-cycle fixed point solution procedures, and the computational effort required to
implement the POD procedure. We also include results for both the reduced and full-order
models for different total simulation RF cycles to demonstrate how using values from
previous converged cycles improves the efficiency of the implicit-Euler time integration
method. Typically, we find that roughly 80% of the computational cost can be attributed
to the semidiscretized function evaluations used to compute the Jacobian array elements
by centered finite differences in the full model; this percentage rises to 90% for the re-
duced model, where the remaining operations, such as computing the update vector for
the Newton–Raphson iterations in the implicit-Euler integrator, become proportionally less
important. All computations were performed using compiled MATLAB functions on a Sun
Microsystems Ultra 10 workstation. Overall, the computational costs of the reduced-model
simulations were found to be approximately 10% of the original detailed simulations using

TABLE IV

Total Elapsed Time and Number of Floating Point Operations Required

for the Full and Reduced Model Simulations

Computational procedure RF cycles Elapsed time (s), floating-pt ops Time, Fl-pt ops/cycle

Full model (N = 100) 2000 6.05e+04, 4.12e+12 30.26, 2.06e+09
Full model 1000 4.33e+04, 3.06e+12 43.26, 3.06e+09
Full model 250 1.28e+04, 9.05e+11 51.10, 3.62e+09
LC fixed-point, full model 5 436.52, 2.98e+10 87.30, 5.95e+09

Generation of reduced basis — 1.8, 1.39e+07 —

Reduced model (N1 = 22, N2 = 8) 2000 6.44e+03, 4.72e+ 11 3.22, 2.36e+ 08
Reduced model 1000 3.50e+03, 2.51e+11 3.50, 2.51e+08
Reduced model 250 1.03e+03, 7.61e+10 4.13, 3.04e+08
LC fixed-point, reduced model 5 33.30, 2.31e+09 6.66, 4.62e+08

Note.Each RF cycle consists of four time intervals (see Fig. 3).
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FIG. 7. Limitations of the reduced model forN1 = 8, N2 = 3, demonstrated by the poor prediction of the
electron flux profileJe during the 60th cycle.

the Chebyshev collocation method, illustrating the computational benefits of the model
reduction procedure.

4.2.4. Reduced-model simulator limitations.It was shown in the previous section that
some of the derived quantities such as ion current are accurately captured by the reduced-
basis model predictions. However, accuracy of reduced-model predictions of electron cur-
rent erodes quickly from the relatively accurate predictions shown in Fig. 6 when the
truncation numbersN1 andN2 are reduced from the values used to produce these results.
For example, Fig. 7 shows a comparison between reduced and full-order simulator predic-
tions of predicted electron current for such a case. The smooth original electron total current
(solid curve) is due to the smooth diffusion and drift flux profiles. However, in the prediction
produced by the reduced model, the (apparently smooth) diffusion and drift currents do not
produce a smooth electron current unless the number of eigenmodes for the first set of
equations is increased to at least 12. This suggests that the electron current predictions are
sensitive to the tail of the eigenmodes and that the higher order modes play an important
role in obtaining converged solutions when using the reduced-basis Galerkin projection
method for this application. Therefore, we conclude that the number of eigenmodes needed
in practical applications of model reduction methods does not depend solely on the analysis
of the normalized partial sum of POD mode eigenvalues (Table III).

5. CONCLUSIONS

The physics of an argon plasma under 1 torr and 40 volts RF forcing was simulated using
a Chebyshev collocation method, and the data were used to produce a reduced-order model.
The detailed simulation results correctly reflected the physics of the argon plasma under
consideration. Numerical residual analysis techniques were developed and used to examine
solution convergence as a function of trial function truncation number. Model reduction
results of the RF plasma simulation were also reported. In developing this procedure, it was
found that the set of empirically determined eigenfunctions should be separated into two
groups according to their type of boundary conditions. With this approach, it was found that
the state variables can be accurately predicted using the empirical eigenfunctions. However,
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it was also found that the prediction of the electron current by the reduced model may not
be necessarily accurate.

Although accurate prediction of electron current is not a major concern in plasma pro-
cessing applications, the prediction accuracy of this quantity potentially can be improved via
two methods. The first approach is to use the nonlinear Galerkin method [1–4]. Higher order
trial function expansions can be used for simulations in this framework by slaving the added
modes to the primary dynamic modes. In other words, the long term dynamic behavior of
the system is dictated by the relatively slow modes while the slaved fast modes are assumed
to be at steady state with respect to the current state of the slow modes. A second method for
improving the accuracy of predicted secondary quantities is to use the partial least-squares
projection (PLS) to generate an additional set of empirical eigenfunctions. The PLS method
can be used to define a reduced basis for the secondary quantities and to determine the linear
relationship between the state variables accurately predicted by the reduced model and the
corresponding secondary quantities.
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