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In this paper, we report on humerical solutions and model reduction results for
a plasma glow discharge model with a radio frequency ionization source. A pseu-
dospectral implementation of a global spectral method was found to give accurate
simulation results that correctly reflected the expected physical behavior of an argon
plasma under the simulated operating conditions. Numerical residual analysis was
used to confirm solution convergence. Using snapshots taken from the detailed sim-
ulations, a reduced basis was generated in terms of two groups of empirically deter-
mined eigenfunctions, distinguished by their type of boundary conditions (Dirichlet
vs Neumann). With this model reduction approach, it was found that the state vari-
ables can be accurately predicted by projecting the original modeling equations onto
the reduced basis with considerable computational savings over the original simula-
tions. Limitations of the model reduction method in predicting secondary (derived)
guantities are discussed.q 2001 Academic Press

Key Wordscollocation; global basis functions; glow discharge; model reduction;
plasma processing; pseudospectral methods.

1. INTRODUCTION

Plasmas with low gas pressure (1 mtorr to 10 torr), temperature (300 to 500 K), and de
of ionization (10 to 10™1) are used extensively for manufacturing integrated circuits
Plasma processing is a key fabrication step, especially for etching and deposition of
films. Plasma discharge reactor systems are characterized by a large number of adjus
parameters and poorly understood transport and reaction mechanisms. This has moti
the vigorous development of first-principles models and full-scale simulators in the p
decade to study various aspects of plasma processing. However, the numerical sol
of the resulting models usually requires substantial computational resources, a prin
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reason being that current simulation techniques inevitably result in a finely resolved spe
discretization mesh in the plasma sheath regions. These large-scale system model
unsuitable for real-time control, efficient simulation, and iterative process optimization.
increase the utility of the existing simulators, model reduction methods must be usec
extract the dominant spatial characteristics of the discharge; numerically efficient spec
projection methods are then used to generate the reduced model.

Numerical methods for producing low-dimensional representations of infinite-dime
sional systems have been proposed in the context of the theory of approximate ine
manifolds (e.g., the nonlinear Galerkin method [1-4]) and reduced-basis methods such a
proper orthogonal decomposition (POD) [5-7]. Applications include fluid flow simulatior
in complex geometries [8], rapid thermal chemical vapor deposition [7], rapid therm
processing simulation and control [9, 10], nonlinear model-based process control [2—4, |
and grooved channel flow reactor control [12—14]. To the authors’ knowledge, there h:
been no similar studies reported on plasma glow discharge processes.

In this study, we report on numerical techniques for computing the radio frequency (F
discharge solution and demonstrate model reduction results for this system. The mod
similar to those used for magnetohydrodynamics simulations and models of this type
commonly used to describe the physics of plasma discharges [15-17]. As the first tes
plasma model reduction, the model and boundary conditions are slightly modified fror
previous DC simulation [17]: in the current study, the electron diffusivity is assumed to
independent of electron energy and the boundary conditions are made to be homogen:
A Chebyshev collocation method is used for the spatial discretization of the glow discha
model. The discretized sets of ordinary differential equations are integrated in time us
a fully implicit integration method with a Newton—Raphson method solving the nonline
set of equations at each time step. The detailed simulation data then are used to gen
the empirical eigenfunctions using the proper orthogonal decomposition method. Fine
the Galerkin projection method is used with the reduced-basis functions to simulate
dynamics of the reduced model. The performance of the reduced model is compared tc
high-degree simulations, and limitations of the reduced-basis discretization methods are
discussed.

2. MODELING EQUATIONS

Complete models of low pressure plasma processing reactors can be conceptually
composed to three submodels [16, 18] describing: (1) the plasma physics (concentre
on discharge structure); (2) plasma chemistry (also called the reactor model); and (3)
face reactions. The plasma chemistry (neutral transport) models are a natural exter
of computational fluid dynamics simulations and are relatively more advanced than
plasma physics model, and the surface reaction model relies on descriptions of the s
state physics of the material undergoing processing; therefore, the plasma physics
model can be considered the link connecting the three submodels. Once the plasma ph
model is complete, the simulator can be coupled with the transport model with an exist
computational fluid dynamics (CFD) package such as FLUENT or FIDAP.

A complete model describing the discharge physics will combine the Boltzmann equat
with Maxwell's equations. However, all the particle-scale information contained in tt
Boltzmann distribution function may not be necessary for a particular modeling purpo
An alternative fluid-type approach based on the moments of the distribution may be u
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to obtain information on the macroscopic properties of the discharge. These fluid ty
formulations have had great success in explaining the physics of the glow discharge, ani
results can be comparable to those produced by Monte Carlo particle simulation technic
[16]. In this study, the model is equivalent to the modeling equations presented in [17,
and the modifications according to [20, 21] are adopted for this RF simulation and mo
reduction study. The single exception to the cited modifications is that a separate effec
electric field meant to compensate for potential errors introduced by applying the diffusi
drift approximation to the ion species balance was not included in this study; under
conditions used for this simulation study, it was found that this effective electric field cot
be neglected because of the relatively small displacement of ions during an RF cycle
summary of the major differences between the model used in the current study and
model used in previous simulations by the authors [17] is included below.

1. Electron diffusivity is a constant in both the electron flux and thermal conductivi
definitions. The model validity is not significantly affected by this assumption [20, 22] und
the operating conditions used in this study. Therefore, the electron and ion fluxes have
same form of diffusion-drift expression.

2. In the electron energy balance equation, the electron density and temperature
combined into the so-called electron energy density;rieez%kae) = Neg€e = We.

3. The argon ionization coefficient value is based on the experimental data fitted
Richards and co-workers [22].

After nondimensionalization, the following one-dimensional model is used for this F
simulation and model reduction study

0= %_Em_ue) €
T%:—%—erkue @
T%:—%+kue ®)
Tg_‘::_%_XJe-E—kueHi, @)

where the dimensionless time is defined as vt, and the four state variables consist of the
voltage®, electron number density, ion number density. , and electron energy density
. The dimensionless variables are defined by

V n n Ten
d=—, U=—, U=—, and w=——.
No No TeoNo

The auxiliary equations for electric field, electron fluxJe, ion flux J,, electron energy
flux Q, and ionization rate coefficiektare

00
0z
JdUe

Je = —E - PeUeE
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ou,
D J=———-P,u,E
et " I+ 97 +U+
5 /0w
== 4+ PwE
Q 3<az+ew)

—4.9
k — J Dalee — 5.3)eve33  fore, > 5.3eV,
o, otherwise

The boundary conditions at= 0 (grounded electrode) are

®=0
Us=0
Vu, =0
w=0

and atz = 1 (powered electrode)

® = Opc + OresSiN2r7)

UGZO
VU+=0
o =0.

Source terms accounting for secondary electron emission were not included in the elec
number density boundary conditions, in contrast to previous DC simulation studies (e
[17]). This simplification is justified because the rate of secondary electron generation is
pected to be less than one tenth the ionization rate [20]; a consequence of this simplifice
is that we should not expect solutions corresponding to a plasma sustained by secon
electrons (the’ discharge, such as shown in [23]). Zero electron density at the boundar
result in the Dirichlet boundary conditions for energy density.

The values and definitions of dimensionless parameters are given in Table I. The
properties and scaling parameters are listed in Table Il. The operating condition and ¢
tem configuration are selected so that computed results can be compared with previc
published simulation results [23—26].

TABLE |
Dimensionless Parameter Values and Definitions
for RF Simulation

Symbol Definition Value Symbol Definition Value

¢ @’ 7238 D, S 3x10°
kigL2N ey

Da olN 9559 Tl 100
1eVo ! Hei

P. o 25 H; T 15578

P, wVo 3500 T w2 45.2

DL De
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TABLE Il
Gas Physical Properties and Glow Discharge System
Physical Dimensions for RF Simulation

Symbol Description Value

L interelectrode spacing 2cm
Ny charge particle reference density x110'° cm3
Vo reference voltage 100V
gkaeo reference electron temperature leVv
D, ion diffusivity 40 %

e electron mobility 3x 10° %
s ion mobility 14 x 10° &2
Hei ionization enthalpy loss 15.578 eV
Ve direct current bias oV
Vre RF forcing amplitude 40V

v RF forcing frequency 13.56 MHz
kio ionization rate prefactor Bx10° g

3. NUMERICAL METHODS

Current plasma equipment simulators are capable of performing two-dimensional sit
lations for their specific design purpose; for example, inductively coupled plasma, elect
cyclotron resonance reactor, reactive ion etch, or PECVD systems have been simul
individually [27]. The simulators take a first-principles approach by solving the full flui
equations with finite element methods [28] or finite difference methods [29], or by solvil
the Boltzmann equations with Monte Carlo methods [30, 31], to obtain the spatiotem|
ral distributions of the state variables. Hybrid methods using both FEM and Monte Ca
methods also have been demonstrated [32, 33]. In this paper, we present the global |
function approach as an alternative to localized basis function discretizations such as f
elements [15] and the block implicitimplementation of finite differences [34]. Our approa
is motivated by the excellent convergence property of spectral methods [36], their tra
parency of implementation to discretizing partial differential equations and their bound:
conditions, and the great flexibility of selecting and optimizing trial functions for particule
applications, e.g., reduced-basis discretization methods. Finally, direct comparisons o
computational cost and numerical accuracy of the reduced-basis and original simulat
are simplified when global basis functions are used in all simulations.

In this spectral formulation, the modeling equations and boundary conditions are ¢
cretized and solved by a weighted residual method that combines elements of colloce
and pseudospectral methods. If each of the stabesd, u., andw) is represented by a
linear combination of orthogonal trial functions(z) defined over 6 z<1, e.g.,

N
Ue(t,2) = Y GOV (D), ®)

i=1

the vector field describing the time evolution of the glow discharge is determined by sub
tuting the trial function expansions into the modeling equations and projecting this resid
onto each trial function, subject to the problem boundary and initial conditions. In particul
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the; (z) are defined in terms of the Lagrange interpolation polynomials for the Chebyst
collocation method [35] used in the detailed simulations of this study. For the reduced-b:
simulations, they; (z) are obtained using the proper orthogonal decomposition techniq
and the semidiscretized reduced model is produced using the Galerkin projection met
[36]. The projection operation is carried out by numerical quadrature on a collocation g
defined by the extrema of a Chebyshev polynomial.

3.1. Chebyshev Collocation Method and Residual Analysis

The building blocks of a Lagrange interpolation polynomial are selected as the tr
functionsy; of (5) for the discrete-ordinate pseudospectral formulation of semidiscretiz
tion method used to produce the initial, detailed RF simulation results. The state varial
u are approximated using a linear combinationNofolynomials of degredN — 1; i.e.,
u= Zi’\':l G (1) ¥ (2), where the building blocks are

N
Z—Zj
J
i(Z2) = .
Yi (2) .I|Zi—Zj
j=1
j#i

The coefficients; represents the value of that state at the discretization pgoin¢cause
¥i(zj) = 8, by definition. Because thg; are continuous and differentiable over the en-
tire domain, explicit formulas for differentiation of up to ordéd — 1) can be obtained
for all z [37]. Once the discretization grid is specified, differentiation becomes a matr
multiplication operation, i.e.,

du d?u

=Ac and —— = Bgc,
dz dz

where the elements @f; andbj; for the differentiation matriced andB are

(7 200 (7:
aj = W ang b = THE 1N (6)
andc = [Cl, Co, ..., CN]T = [U(Z]_), uzp), ..., U(ZN)]T.

In principle, any discretization grid can be used to construct the Lagrange interpolat
polynomial. However, the interpolated solutions between discretization points are accu
only ifthe individual building blocks behave well between the points. Lagrange polynomie
constructed with uniformly spaced discretization points will pass through all constructi
points exactly but will oscillate between points with increasing amplitude near the inten
end pointsz = 0, 1). It has been shown [35] that spacing the discretization points accordi
to a quadratic weight function will suppress the spurious oscillations near the interval e
points. In this study, the discretization positions are chosen as the Chebyshev extr
distribution,

z,—:i(cos((]N__l)ln)—i—l), j=N,N—1,..., 1 @

In the limit of the endpoints, the Chebyshev node spacing is inversely proportional to
square of the total number of points used. This suggests that these polynomial trial funct
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can resolve features with length scales of oder in the sheath regions while retaining
good convergence properties in the bulk phase (see the discussions in [36, p. 40].

Having defined the discretization points and the discrete differentiation operators,
four modeling equations are discretized to givéN3- 2) ordinary differentiation equa-
tions (ODES) in time andN — 2) linear algebraic equations (from the Poisson equatior
plus eight linear equations from the boundary conditions. The set of discretized syster
equations is integrated in time using the fully implicit backward-Euler algorithm using tt
Newton—Raphson method to solve the nonlinear equations at each time step. The mod
equations describing the time-integration method can be written as

AEk+l _ E(UE:HL _ u(|§+l> =0

At (8)
uk+l 4 T(AI*\k-H. _ Gk+l) — uk

Luktt =c, (9)

where At is the given time step size while denotes the current step; the first equatior
is the discretized Poisson equation (1)T", andG represent discretized valuesigf, Je,
andku, (respectively) in the electron continuity equation (2)uar, J,, andku, for the
ion continuity equation (3), o, Q, and (¢ J. - E + kuegH;) for electron energy density
equation (4). Equation (9) represents the eight boundary conditions; the linear ojherat
is the discretized first-order differentiation arrAywhen (9) represents the ion boundary
condition, or is the identity array otherwise. Tt (9) is zero except when (9) corresponds
to ®(z = 1), for which it is ®gg sin(2r 7).

There are two advantages of using the fully implicit backward Euler algorithm. First,
is simple to implement and is unconditionally stable. The second advantage is that the 1
increment can be fixed so that at each time step the only computation is the Newton—Rap
iteration. By storing the solution calculated over the entire previous RF cycle and using th
as the corresponding initial guesses for the Newton—Raphson procedure for points di
the next cycle, the number of iterations required to reach converged solutions is significa
decreased. An additional advantage will be discussed in the following section.

The convergence of the computed solutions (in terms of trial function truncation numl
N) can be assessed by examining the weighted 2-norm of the time derivative or resic
functions (right-hand sides of Eqgs. (1)—(4)) plotted as a function of the spatial discretizat
level (N) of the modeling equation. In this study, a two-level grid method was imple
mented to numerically conduct this residual analysis for the collocation solution. The til
derivative/residual function is obtained by substituting the solution, interpolated to a su
ciently fine grid (sufficiently fine to provide a converged approximation to the residu
function), into the modeling equations. Neville’s algorithm [38] is used for this high degre
interpolation. This interpolation algorithm is based on rearranging the Lagrange interpo
ing polynomial and noting that any interpolated value of the polynomial, passing throu
Zi,Zi1, -, Zi+m, Can be obtained by the values of two lower degree polynomials, passi
throughz to z,m_1 andz; to z ;. A tableau of values thus is established from the
zeroth degree polynomials, passing through only one point, to the highest degree, whi
the interpolated result.

This residual analysis requires the definition of quadrature operations on the finer-s
discretization grid. The quadrature weights associated with the Chebyshev extrema
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obtained by noting that choosing this node distribution implicitly implements the Chebysh
polynomial expansion, which can be evaluated with the exact formula

Ta(z) = cogncosi(z)), n=0,1,2,....

Thus, the quadrature weight arrayassociated with the Chebyshev extrema grichn be
obtained by

w=(QQ )W, (10)

where Qi j = Tj_1(z) and Q j = Tj_1(z) fori, j =1,2,...,N. Therefore,Q is the
Chebyshev polynomial interpolation array evaluated on the Gauss—Lobatto quadrature
z computed using the software described in [39].

3.2. Limit-Cycle Fixed-Point Methods

Defining v as the vector of the spatially discretized state varialdlese, u,, andw,
we can write the time-discretized set of equations that result from the backward-EL
integration method (8, 9) as

g(Vk+l, Vk) =0.

The limit-cycle fixed-point algorithm is based on finding the limit-cycle initial conditién
such that

ns

Vs —vi=0, (11)

wherens — 1is the number of time intervals used in the backward-Euler integration meth
per RF cycle. Using a subscript to denote fixed-point algorithm iteration number, linearizi
(11) at the initial conditiorv! gives

ns 1 v 1 1
O=vi"—vi+ PV =) (Viga = Vi)

which is solved for the initial condition update'(; — v}).
To compute the derivative®/"S/v?, gis linearized at a solutiornvf+?, v) to g = 0 and
the following arrays are defined

99 ag
k+1 _ _
J = kT and C= T
We find
aVkJrl 1

vk —[Te

and
8Vk+n
P — (—1)“[Jk+n]71C[Jk+n71]71C o [Jk+1] 71C.

The overall procedure for computing the updated set of initial state variable profiles cor
atlittle additional computational cost becausgthe Jacobian array associated with solving
(8, 9) andC is a constant array consisting 6f{) on the diagonal elements corresponding
to each semidiscretized ordinary differential equation in time (and zeros elsewhere).
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3.3. POD-Galerkin Method

The large number of discretization points required to resolve the sheath regions anc
many RF cycles required to asymptotically approach an equilibrium solution make |
solutions computationally expensive. This motivates the development of the reduced-b
projection method used in this study to obtain a reduced-order model.

In the overall POD-Galerkin projection approach to producing reduced-order mod
each state variable is defined by a global trial function expansion (as in Eq. (5)), where
trial functionsys; are replaced by thogg obtained by the proper orthogonal decompositior
method, a technique for generating an optimal basis for time-varying state variables
Consider the ensembl@®} of scalar fields, each being a function= u(z) defined on
the domain [0, 1]. The goal is to find a basis (2)}52, for a subspace of a Hilbert space
L2([0, 1)) that is optimal for the data s¢u*} in the sense that truncated sequences of th
form

N
un(@ = _aj;(2
j=1

describe atypical member of the ensemble better than representations of the same trunc
numberN in any other basis. The resulting mathematical statement of optimality can
reduced to an eigenvalue problem [5]

1
/O U@U @) (@) dZ = 16 (2), (12)

where thex denotes the complex conjugate. The eigenfunctigrs this two-point spatial
correlation operator form a set of orthogonal functions satisfying the same homogene
boundary conditions as thé while the eigenvalues; quantify the probability of the
occurrence of thé; in the ensemble. Because

A= ((u, ¢)?),

where (,-) and{-) denote the inner product and the ensemble average, respectively,
mean square error due to the truncation is

[o¢]
g2 = Z Aj.
j=N+1
In other words, the “energy” captured can be quantified by the sum of the eigenvall
corresponding to the modes used in the solution expansg{¢p).

Direct solution methods for the eigenvalue problem (12) can become computation:
prohibitive when the functiom is represented by a high degree, trial function expansiot
such asin highly resolved finite element simulations. To overcome this numerical limitati
the basis functiong; may be found by the method of snapshots or strobes [40]. Suppose t
{u"}M, are spatially discretized snapshots of the state variabletfiatdl that the weighted
inner product on thé&l-dimensional vector space is denoted hy) that is, the discretized
version of the inner product ib?([0, 1]). If ¢ is an eigenvector then

M
¢ = bk
k1
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where the coefficients, remain to be determined. Ti-dimensional eigenvalue problem
analogous to (12) may then be written as

1 M ) ) M M
<M Z u @ul, Z bkuk> =\ Z buX, (13)
io1 k=1 k=1

where® is the tensor product. The left-hand side of (13) can be rearranged to give

M

1 4
> uk)bk] u' (%),

k=1

M
i=1

and the sufficient condition for the solution of (13) will be to find coefficidptsuch that

M 1
Zm(u',uk)bkszi; i=1...,M. (14)
k=1

ThisisnowarM x M eigenvalue problem to be solved for the snapshot linear combinatio
b that define the discretized reduced-basis functions. This problem is readily solved us
the singular value decomposition function iraM.AB ; theb correspond to the left singular
vectors of the array of snapshot inner products, and the eigenvalues correspond tc
singular values of the same. Finally, we note that the snap$hdf$, must be linearly
independent to generalié orthogonal eigenfunctions defined by the vectgrand that the
POD method does not give a criterion in choosMg therefore, numerical tests must be
conducted to determine when a sufficiently “converged” basis is found.

3.3.1. Galerkin projection numerical methodddaving computed one or more reduced-
bases with the POD method, the reduced model is produced by projecting the origi
nonlinear modeling Egs. (1)-(4) onto these spatially discretized trial functions (note tl
a variable transformation féPb is used to make the boundary conditiorzat 1 homoge-
neous). The trial functions are discretized on a Chebyshev extrema grid (7) and the s
discrete differentiation arrays are used as in Eq. (6) as part of the numerical, semidisc
Galerkin projection. The quadrature weights required in the Galerkin projection are obtait
using Eq. (10).

With the empirical eigenfunctions satisfying all boundary conditions, the four modelir
equations are discretized to gi&N; + N,) ODEsintime andN, linear algebraic equations
(resulting from the Poisson equation), wheXe is the number of trial functions used
to approximate®, ue, andw, while N, is the truncation number fan, expansion (the
difference betweem; and N, is a result of the different types of boundary conditions).
The same implicit time integration method used previously in the Chebyshev collocati
simulations is employed again. The set of equations for the time integratian of and
w can be written as

uk+1 + %PI (Al-\kJrl _ Gk+l) — Uk,

where the notation is similar to Eq. (8), hubow represents the mode amplitude coefficient
vectors andP; is the discretized projection operator corresponding to eigenfuncioois

seti. Note that mode amplitude coefficients for the voltage trial function expansion can
defined explicitly as a function of electron and ion number densities through the Pois:
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equation; i.e.,
a=e(P1(B¥1) H(—(P1¥2)c+ (P1P1)b),

where the mode coefficients and c correspond to the electron number density and iol
number density, respectively.

4. COMPUTATIONAL RESULTS AND DISCUSSION

4.1. Results for a Representative RF Case

Detailed simulation results for argon RF discharges under various operating conditi
have been reported in the literature [15, 16, 23—-26]. The purpose of this simulation stuc
to show that accurate results can be obtained using global spectral methods, and to prt
the snapshot data for the POD method as part of the model reduction procedure.

Figure 1 shows a representative solution obtained using 100 discretization points to
resent the particle densities, voltage field, and electron temperature over one RF cycle.
interelectrode spacing was set at 2 cm and the operating conditions corresponded to !
gas pressure and 40 volts RF forcing amplitude. The simulation initial conditions consis
of flat particle density profiles; initial ion density was one thousandth of the target me
value and electron density was one tenth of that of the ions. Solutions obtained using
ferent initial values for voltage and electron energy were investigated; these simulation:
asymptotically approached the same limit-cycle solution. For the long-term time-integrat
simulations, the solution was considered to be converged onto a limit cycle when the 2-n
of the difference between the beginning and end of the cycle for the state variables pa
below a preselected value of 10 Likewise, the Newton—Raphson iterations were stoppe
when the norm of the difference between initial and final states reached the same valu

Snapshots of the solution profiles corresponding to a limit-cycle solution are showr
four phases of an RF cycle in Fig. 1 (solutions obtained by integrating over 2000 RF cyc
are essentially identical to those obtained by the fixed-point algorithm). The solution pl
gualitatively agree with many of the reported physical phenomena characteristic of ar
plasmas[15, 16]. The ion density profile is essentially constant over the cycle while electr
instantly respond to the voltage modulation. The plasma sheath thickness reaches 0.
near the cathode, and the plasma potential is approximately 20 volts. Voltage distribu
is flat in the bulk phase, showing the quasineutral property of the plasma, and is ste
sloped in the sheaths. Thus, as shown in the electric field distribution plot, the major elec
driving force is located in the sheath.

Electron energy is also modulated with the electrode voltage variations. The mean en
distribution is flat in the bulk and has maximum magnitude inside the momentary cath
sheath. Because the ionization rate depends on both the electron number density ar
electron energy, the ionization peak occurs at the momentary cathode sheath/bulk bour
(compare the energy and the ionization rate plots), where the number of high energy elect
is sufficient to undergo a significant electron-impact ionization reaction.

The plots of electron, ion, displacement, and total currents shown in Fig. 2 (corresponc
to the same solution shown in Fig. 1) quantitatively agree with the total current reportec
[23] despite the omitted effect of secondary electrons. Because the generation of secor
electrons contributes to sustaining the discharge, the total current needed to maintai
discharge should be lower. Qualitatively, the plot of plasma current profiles also reflects
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FIG. 1. Argon RF discharge solution corresponding to a converged limit cycle at 1 torr pressure, 2-
interelectrode spacing, and 293 K. Note that the ion particle density profile remains essentially constant du
the RF cycle.

physics of the discharge. lon currents, modulated inside the sheaths, are almost straic
the bulk phase due to the ambipolar diffusion effect (see Fig. 1). Electrons are the m:
current carrier in the bulk phase while displacement currents dominate inside the she
The ion current only contributes 10% of the total current. The sum of electron, ion, a
displacement currents is a constant due to the current conservation law, which can be de
using the Poisson equation (1), particle continuity equations (2) and (3), and the definit
of displacement current (see [41]). The current characteristics reflect the capacitive na
of the argon discharge; i.e., the sheaths behave like capacitors while the bulk phase bet
like aresistor. The regions are connected sequentially as a unit in the entire electrical cir
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FIG. 2. Snapshots of current profiles in the RF simulation.

Figure 3 shows the ion current (at the powered electrode) and the total current respon
to the driving voltage over an RF cycle. The four phases used in Figs. 1 and 2 are
marked on the sine curve of the voltage plot. The ion current and the total current cur
are interpolated from the current values at the four phase4%0 90°, and 135) using a
Fourier series. It is interesting to note that the total current has an approximgibade
lead with respect to the controlled voltage while the ion current follows the phase of
voltage waveform.

The simulation results demonstrate both the correct physics of the discharge model
the challenges the model presents to the numerical solution techniques. As shown, the
mary characteristic of plasma is the thin boundary layers. What distinguishes RF disch:
simulations from many computational fluid dynamics computations is that the soluti
convergence depends on resolving the boundary layers rather than large-scale struc
Independent of what numerical techniques are used, the trial functions must be abl
resolve the details of the interphases and the sheaths. Insufficient resolution of thes
gions will cause problems in terms of solution convergence. The solution shown in Fig. :
produced by the Chebyshev collocation method with 100 collocation points. This “coar:
grid solution is interpolated with 250 Gauss—Lobatto points and the interpolated solutio
substituted into the modeling equations to obtain the time derivative and residual functi
(see Egs. (1)—(4)). The 2-norms of these functions are plotted in Fig. 4 as a function of
truncation number corresponding to the number of solution collocation points used.

The residual analysis (Fig. 4) confirms that the solution found under this operating c
dition can be considered a converged solution. Because the Poisson equation is an ord
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FIG. 3. lon current at the powered electrode and total current as a function of the applied voltage in the
simulation.

differential equation, as the number of collocation poMtcreases, the residual function
(Eg. (1)) norm approaches zero. For the other three partial differential modeling equatic
the norm of the time derivative functions (see the right-hand side of Egs. (2)—(4) approac
(RF-cycle average) constants because of the nonzero time derivative functions. The resi
plot serves as a good criterion for the measuring trade-off between computational efficie
and solution discretization accuracy.
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FIG. 4. Residual analysis for RF simulation.
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4.2. RF Simulation Model Reduction

4.2.1. Optimal discretized basis functions from PODhe computational efficiency
of the POD-based model reduction method results from extracting the minimum nu
ber of uncorrelated spatial characteristics of the existing solutions and using the princ
spatial structures of the solutions to spectrally discretize the original, nonlinear model
equations. Because each empirical eigenfunction is better tailored to capturing the sp
features of the solution, relatively few trial functions are needed to predict the true syste
dynamics. This translates directly into significant computational saving over the simulatit
based on orthogonal polynomial or other general trial function expansions. As discusse
Section 3.3, the truncation number of the empirical eigenfunction expansions can be
veniently determined using the eigenvalue associated with each POD mode. In this sec
the empirical eigenfunctions are generated from the simulation data obtained in previ
section, and the performance of the reduced model is demonstrated in the next sectiol

Figure 5 shows the empirical eigenfunctions and the scaled “solution snapshots” u
to generate the reduced basis. The purpose of this model reduction study is to accur
predict with the reduced model the dynamic behavior that includes the start-up trans
and the limit-cycle behavior (a goal similar to [8]). Therefore, snapshot data were collec
from a transient simulation starting from the stated initial condition to a state near the lir

Normalized V, n, w Normalized n,

0 0.2 0.4 0.6 0.8 1

Empirical Eigenfunctions, Set 1 Empirical Eigenfunctions, Set 2
5 . 15—
<= mode 1 P = mode 1 |
AAAAAAA ~ - mode 2 1r , -~ ~ mode 2 []
1 — mode 3 0.5 s - — mode 3

-2 -2 : : : :
o 02 04 06 08 1 0 02 04 06 08 1

FIG.5. Snapshots (top) and empirical eigenfunctions (bottom) generated using the proper orthogonal dec
position.
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cycle. In this study, a set of approximately 60 snapshots selected from the first 1000
cycles were used.

Instead of generating four sets of empirical eigenfunctions, the solution profile snaps
data are classified into two sets according to the form of their boundary conditions. T
first set corresponds to the state variables that are subject to Dirichlet boundary conditi
it includes electron density, energy density, and voltage (after the variable transforma
is applied making the boundary condition homogeneous at the powered electrode) pr
snapshots. The three sets of solution snapshots after scaling are shown in the top le
Fig. 5. Concatenation of the solution snapshots into a single snapshot array for the F
procedure exploits the possible correlations among the three state variables, potent
reducing the total number of empirical eigenfunctions needed for the subsequent projec
methods. The second set of functions corresponds to snapshots of ion density profile, w
must satisfy vanishing first-derivative boundary conditions.

Sorting the snapshot data according to boundary condition type has an additional bel
cial effect on the resulting reduced bases. As discussed earlier, the mass of the (positiy
ionized gas species relative to the electrons results in little change of the ion number der
profile during an RF cycle, while the other three states (electron density, voltage, and e
tron energy density) are strongly modulated by the momentary cathode voltage. This g
the ion number density profile a largely symmetric form (with respea) twompared to
the other states. Therefore, adding snapshots of the other fields to the ion density snap.
unnecessarily introduces asymmetry. This property is dramatically shown in the empiri
eigenfunctions presented in Fig. 5; compare the highly nonsymmetric third mode of Se
to the relatively symmetric third mode of Set 2.

Table Il shows the percentage of the accumulated energy (the normalized partial ¢
of eigenvalues) associated with two sets of empirical eigenfunctions produced by the P
method. Both sets have a dominant first mode, which captures the major characteristic
the solution profiles. The second and higher modes tailor the solution profiles to desc
the finer structure. At first glance it appears that using the first three to five modes fr
each set would be sufficient to produce accurate solutions using the reduced-order m
However, we found that a truncation numkés = 8 was necessary for the ion density
profile expansion whiléN; = 22 was used for the remaining state variable trial functior
expansion truncation numbers. Analysis of this discrepancy is provided in Section 4.2..

4.2.2. Reduced-model simulation result$he reduced-order model is produced by
semidiscretizing the original RF plasma modeling equations using the Galerkin project

TABLE 11l
Accumulated Energy Captured by the
Empirical Eigenfunctions

Setl Set 2

Mode i % Mode Ai %

181.86 96.22% 1 61.7113  97.9544%
5.39 99.08% 2 1.1927 99.8475%
1.34 99.78% 3 0.0897  99.9898%
0.34 99.96% 4 0.0062  99.9996%
0.03 99.98% 5 0.0001  99.9998%

a b~ wN PR
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method and the empirical eigenfunctions shown in the Fig. 5. Each state variable is |
resented in terms of a linear combination of the empirical eigenfunctions that satisfy
appropriate boundary conditions. An important difference from the previously descrik
collocation method is each computational step in time involves projections by quadratt
It was found that 60-point Chebyshev extrema quadrature integration of these eigenft
tions essentially produce converged inner product computations and that little accuracy
gained using finer discretization grids for the reduced-model simulations (cf. the 100 po
used to obtained the snapshot data).

Figure 6 (left column) shows representative results produced by the reduced-order m
corresponding to the 250th and 500th RF cycle (computed by integrating the reduced m

x10° Reduced Model x 10’ Full Model

0.02 0.02
—
3
< 0 0
£
g -0.02 -0.02
5
3] ‘
5 -0.04}~" - 250cycles || —0.04
N — - 500 cycles
— limit cycle
-0.06 -0.06
0 0.5 1 1.5 2 0

0 0.5 1 1.5 2 0 0.5 1 1.5 2
z (em) z (cm)
FIG. 6. Performance of the reduced model. The left column shows the solutions during the 250th, 500th,
limit RF cycle for the reduced model while the right column corresponds to the original solution snapshots at
same points in time.
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over each time interval) and a point on the limit-cycle solution (computed using the fixe
point algorithm). The initial condition for the limit cycle procedure was chosen as the profil
corresponding to the start of the 250th cycle; we note that at that point in the simulati
the values ofie(2) andu. (z) are less than half their steady-state values. This gives son
indication of the excellent convergence properties of the fixed-point algorithm. The ric
column shows the full-order simulation results at the same points in time for comparis
The reduced-order model predictions of the state variable profiles are accurate with ¢
minor errors visible for electron density inside the sheaths. The ion density and curre
which are of primary importance in plasma processing applications, are particularly accul
when compared to the detailed simulations. We note that these profiles were not use
the original snapshot data for generating the empirical eigenfunctions. Minor different
between the full and reduced-order simulator predictions can be seen in the electron cul
profiles—these differences will be discussed in Section 4.2.4.

4.2.3. Comparison of computational cost& summary of the computational costs of
the full and reduced-order simulations are presented in Table IV. In this table we pres
a comparison of the execution time and floating point operation counts of the simulatio
the limit-cycle fixed point solution procedures, and the computational effort required
implement the POD procedure. We also include results for both the reduced and full-or
models for different total simulation RF cycles to demonstrate how using values frc
previous converged cycles improves the efficiency of the implicit-Euler time integratic
method. Typically, we find that roughly 80% of the computational cost can be attribut
to the semidiscretized function evaluations used to compute the Jacobian array elen
by centered finite differences in the full model; this percentage rises to 90% for the
duced model, where the remaining operations, such as computing the update vecto
the Newton—Raphson iterations in the implicit-Euler integrator, become proportionally le
important. All computations were performed using compilegrihs functions on a Sun
Microsystems Ultra 10 workstation. Overall, the computational costs of the reduced-mo
simulations were found to be approximately 10% of the original detailed simulations usi

TABLE IV
Total Elapsed Time and Number of Floating Point Operations Required
for the Full and Reduced Model Simulations

Computational procedure RF cycles Elapsed time (s), floating-pt ops Time, Fl-pt ops/cyc

Full model N = 100) 2000 6.05¢04, 4.12e-12 30.26, 2.06€09
Full model 1000 4.33¢04, 3.06e-12 43.26, 3.06€09
Full model 250 1.28¢04, 9.05e-11 51.10, 3.62¢09
LC fixed-point, full model 5 436.52, 2.98€10 87.30, 5.95¢09
Generation of reduced basis — 1.8, 1.39¢ —

Reduced modelN; = 22, N, = 8) 2000 6.44¢-03, 4.72e+ 11 3.22,2.366-08
Reduced model 1000 3.50683, 2.51e-11 3.50, 2.51¢08
Reduced model 250 1.03€3, 7.61e-10 4.13, 3.04¢08
LC fixed-point, reduced model 5 33.30, 2.34@9 6.66, 4.62¢-08

Note.Each RF cycle consists of four time intervals (see Fig. 3).
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FIG. 7. Limitations of the reduced model fa¥; = 8, N, = 3, demonstrated by the poor prediction of the

Predicted by Reduced Model

electron flux profileJ, during the 60th cycle.

the Chebyshev collocation method, illustrating the computational benefits of the mo
reduction procedure.

4.2.4. Reduced-model simulator limitationdt was shown in the previous section that
some of the derived quantities such as ion current are accurately captured by the redt
basis model predictions. However, accuracy of reduced-model predictions of electron «
rent erodes quickly from the relatively accurate predictions shown in Fig. 6 when t
truncation number$l; and N, are reduced from the values used to produce these resul
For example, Fig. 7 shows a comparison between reduced and full-order simulator pre
tions of predicted electron current for such a case. The smooth original electron total cur
(solid curve) is due to the smooth diffusion and drift flux profiles. However, in the predictic
produced by the reduced model, the (apparently smooth) diffusion and drift currents do
produce a smooth electron current unless the number of eigenmodes for the first se
equations is increased to at least 12. This suggests that the electron current predictior
sensitive to the tail of the eigenmodes and that the higher order modes play an impoi
role in obtaining converged solutions when using the reduced-basis Galerkin projec
method for this application. Therefore, we conclude that the number of eigenmodes nec¢
in practical applications of model reduction methods does not depend solely on the anal
of the normalized partial sum of POD mode eigenvalues (Table I11).

5. CONCLUSIONS

The physics of an argon plasma under 1 torr and 40 volts RF forcing was simulated u
a Chebyshev collocation method, and the data were used to produce a reduced-order n
The detailed simulation results correctly reflected the physics of the argon plasma ur
consideration. Numerical residual analysis techniques were developed and used to exa
solution convergence as a function of trial function truncation number. Model reducti
results of the RF plasma simulation were also reported. In developing this procedure, it
found that the set of empirically determined eigenfunctions should be separated into
groups according to their type of boundary conditions. With this approach, it was found t
the state variables can be accurately predicted using the empirical eigenfunctions. Hows
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it was also found that the prediction of the electron current by the reduced model may
be necessarily accurate.

Although accurate prediction of electron current is not a major concern in plasma p
cessing applications, the prediction accuracy of this quantity potentially can be improved
two methods. The first approach is to use the nonlinear Galerkin method [1-4]. Higher or
trial function expansions can be used for simulations in this framework by slaving the adc
modes to the primary dynamic modes. In other words, the long term dynamic behavio
the system is dictated by the relatively slow modes while the slaved fast modes are asstL
to be at steady state with respect to the current state of the slow modes. A second methc
improving the accuracy of predicted secondary quantities is to use the partial least-squ
projection (PLS) to generate an additional set of empirical eigenfunctions. The PLS meti
can be used to define areduced basis for the secondary quantities and to determine the
relationship between the state variables accurately predicted by the reduced model an
corresponding secondary quantities.
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